3,206 research outputs found

    A 3.1-4.8GHz IR-UWB All-Digital Pulse Generator in 0.13-um CMOS Technology for WBAN Systems

    Get PDF
    Analog, Digital & RF Circuit DesignImpulse Radio Ultra-WideBand (IR-UWB) systems have drawn growing attention for wireless sensor networks such as Wireless Personal Area Network (WPAN) and Wireless Body Area Network (WBAN) systems ever since the Federal Communications Commission (FCC) released the spectrum between 3.1 and 10.6GHz for unlicensed use in 2002. The restriction on transmitted power spectral density in this band is equal to the noise emission limit of household digital electronics. This band is also shared with several existing service, therefore in-band interference is expected and presents a challenge to UWB system design. UWB devices as secondary spectrum users must also detect and avoid (DAA) other licensed users from the cognitive radio???s point of view. For the DAA requirement, it is more effective to deploy signal with variable center frequency and a minimum 10dB bandwidth of 500MHz than a signal covering the entire UWB spectrum range with fixed center frequency. A key requirement of the applications using IR-UWB signal is ultra-low power consumption for longer battery life. Also, cost reduction is highly desirable. Recently, digital IR-UWB pulse generation is studied more than analog approach due to its lower power consumption. An all-digital pulse generator in a standard 0.13-um CMOS technology for communication systems using Impulse Radio Ultra-WideBand (IR-UWB) signal is presented. A delay line-based architecture utilizing only static logic gates and leading lower power consumption for pulse generation is proposed in this thesis. By using of all-digital architecture, energy is consumed by CV2 switching losses and sub-threshold leakage currents, without RF oscillator or analog bias currents. The center frequency and the fixed bandwidth of 500MHz of the output signal can be digitally controlled to cover three channels in low band of UWB spectrum. Delay based Binary Shift Keying (DB-BPSK) and Pulse Position Modulation (PPM) schemes are exploited at the same time to modulate the transmitted signals with further improvement in spectrum characteristics. The total energy consumption is 48pJ/pulse at 1.2V supply voltage, which is well suitable for WBAN systems.ope

    The Connection between Star-Forming Galaxies, AGN Host Galaxies and Early-Type Galaxies in the SDSS

    Full text link
    We present a study of the connection between star-forming galaxies, AGN host galaxies, and normal early-type galaxies in the Sloan Digital Sky Survey (SDSS). Using the SDSS DR5 and DR4plus data, we select our early-type galaxy sample in the color versus color-gradient space, and we classify the spectral types of the selected early-type galaxies into normal, star-forming, Seyfert, and LINER classes, using several spectral line flux ratios. We investigate the slope in the fundamental space for each class of early-type galaxies and find that there are obvious differences in the slopes of the fundamental planes (FPs) among the different classes of early-type galaxies, in the sense that the slopes for Seyferts and star-forming galaxies are flatter than those for normal galaxies and LINERs. This may be the first identification of the systematic variation of the FP slope among the subclasses of early-type galaxies. The difference in the FP slope might be caused by the difference in the degree of nonhomology among different classes or by the difference of gas contents in their merging progenitors. One possible scenario is that the AGN host galaxies and star-forming galaxies are formed by gas-rich merging and that they may evolve into normal early-type galaxies after finishing their star formation or AGN activities.Comment: 5 pages with emulateapj, 2 figures, accepted for publication in the Astrophysical Journal Letter

    A Case of Primary Paraganglioma that Arose in the Pancreas: the Color Doppler Ultrasonography and Dynamic CT Features

    Get PDF
    Paragangliomas rarely originate from the pancreas and they are characterized on imaging studies as well-marginated, hypervascular masses with cystic areas. We herein report on a case report of pancreatic paraganglioma in a 57-year-old woman, which was confirmed on pathology. Color Doppler ultrasonography and dynamic CT demonstrated a well-demarcated, extremely hypervascular mass with prominent intratumoral vessels and early contrast filling of the draining veins from the mass. Endoscopic retrograde cholangiopancreatography showed that the main pancreatic duct was displaced and mildly dilated
    corecore